Antidepressant-like properties of the anti-Parkinson agent, piribedil, in rodents: mediation by dopamine D2 receptors
Brocco M, Dekeyne A, Papp M, Millan MJ.
aPsychopharmacology Department,
Servier Research Institute,
Croissy Research Center, Paris,
France bInstitute of Pharmacology,
Polish Academy of Sciences, Krakow, Poland.
Behav Pharmacol. 2006 Nov;17(7):559-72.


The dopamine D2/D3 receptor agonist and alpha2 adrenergic receptor antagonist, piribedil, is used clinically as monotherapy and as an adjunct to L-3,4-dihydroxyphenylalanine in the treatment of Parkinson's disease. As it appears to improve mood, we examined its actions in rodent models of antidepressant properties, in comparison with the prototypical anti-Parkinson agent, apomorphine, the D2/D3 receptor agonist, quinpirole, and the antidepressants, imipramine and fluvoxamine. In the mouse forced-swim test, acute administration of imipramine, fluvoxamine, apomorphine or quinpirole decreased immobility time, actions dose dependently mimicked by piribedil (2.5-10.0 mg/kg, subcutaneously). In rats, acute and subchronic administration of piribedil similarly reduced immobility (0.63-10.0 mg/kg, subcutaneously) and apomorphine, quinpirole and imipramine were also active in this test, whereas fluvoxamine was inactive. Both in mice and in rats, the D2/D3 receptor antagonist, raclopride, and the D2 receptor antagonist, L741,626, dose dependently blocked the antidepressant properties of piribedil, whereas the selective D3 receptor antagonists, S33084 and SB277,011, were ineffective. In a chronic mild stress model in rats, piribedil (2.5-40.0 mg/kg, subcutaneously) restored sucrose intake in stressed animals exerting its actions more rapidly (by week 1) than imipramine. Imipramine, fluvoxamine, apomorphine, quinpirole and piribedil dose dependently (0.63-10.0 mg/kg, subcutaneously) suppressed aggressive and marble-burying behaviour in mice. In the latter procedure, raclopride and L741,626, but not S33084, attenuated the actions of piribedil. Over a dose range (0.63-10.0 mg/kg, subcutaneously) equivalent to those active in models of antidepressant activity, piribedil did not stimulate locomotor behaviour. In conclusion, principally via recruitment of D2 receptors, piribedil exerts robust and specific antidepressant-like actions in diverse rodent models.
Parkinson's disease
Dopamine and sexual function
Dopaminergics and depression
Dopamine, gambling and sex manias
Is piribedil (Trivastal) a smart drug?
Piribedil (Trivastal) as an antidepressant

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family