Stress, metaplasticity, and antidepressants
Garcia R.
Neurobiologie Comportementale,
Faculte des Sciences,
Universite de Nice-Sophia Antipolis,
Nice, France.
Curr Mol Med 2002 Nov;2(7):629-38


A large body of evidence has established a link between stressful life events and development or exacerbation of depression. At the cellular level, evidence has emerged indicating neuronal atrophy and cell loss in response to stress and in depression. At the molecular level, it has been suggested that these cellular deficiencies, mostly detected in the hippocampus, result from a decrease in the expression of brain-derived neurotrophic factor (BDNF) associated with elevation of glucocorticoids. Thus, an increase in expression of BDNF, facilitating both neuronal survival and neurogenesis, is thought to represent a converging mechanism of action of various types of antidepressant treatments (e.g., antidepressant drugs and transcranial magnetic stimulation). However, as also revealed by converging lines of evidence, high levels of glucocorticoids down-regulate hippocampal synaptic connectivity ('negative' metaplasticity), whereas an increase in expression of BDNF up-regulates connectivity in the hippocampus ('positive' metaplasticity). Therefore, antidepressant treatments might not only restore cell density but also regulate higher-order synaptic plasticity in the hippocampus by abolishing 'negative' metaplasticity, and thus restore hippocampal cognitive processes that are altered by stress and in depressed patients. This antidepressant regulatory effect on hippocampal synaptic plasticity function, which may, in turn, suppress 'negative' metaplasticity in other limbic structures, is discussed.
21st Century
Atypical depression
Retarded depression
BDNF and new brain cells
Nootropics ('smart drugs')
How do antidepressants work?
Antidepressants and new brain cells
NO, BDNF, exercise and antidepressants
BDNF: flipping the brain's addiction switch without drugs
Brain-derived neurotrophic factor (BDNF) and mental health
AMPA receptors and brain-derived neurotrophic factor (BDNF)
Antidepressant treatments differentially regulate BDNF transcripts

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family