5-Hydroxytryptamine-moduline: a novel
endogenous peptide involved in the control of anxiety

Grimaldi B, Bonnin A, Fillion MP, Prudhomme N, Fillion G
Unite de pharmacologie neuroimmunoendocrinienne,
Institut Pasteur, Paris, France.
Neuroscience 1999; 93(4):1223-5


The serotonergic system is considered as a neuromodulatory system interacting with other neurotransmissions in the brain and participating in the elaboration of an adapted response of the central nervous system to external stimuli. Indeed, serotonin is involved in a large number of physiological events, such as temperature regulation, sleep, learning and memory, behaviour, sexual function, hormonal secretions and immune activity, and in parallel, it is also implicated in pathological disorders particularly in stress, anxiety, aggressivity and depression. At least 14 different types of serotonin receptors mediate serotonergic activity and among them, serotonin-1B receptors play an important role in the control of the serotonergic function. Serotonin-1B receptors are autoreceptors localized on serotonergic neuron terminals (varicosities) where they inhibit the evoked release of serotonin and its biosynthesis; they are also heteroreceptors located on non-serotonergic terminals, where they inhibit the release of the corresponding neurotransmitters (acetylcholine, GABA, noradrenaline, etc.). 5-Hydroxytryptamine-moduline, an endogenous tetrapeptide (Leu-Ser-Ala-Leu) recently isolated and characterized from rat and bovine brain extracts, was shown to specifically interact with serotonin1B receptors as an allosteric modulator having antagonistic properties in vitro and in vivo. Immuncytochemical studies using specific polyclonal anti-peptide antibodies have shown that this peptide is distributed heterogeneously in mouse brain and located in areas which also contain serotonin-1B receptors. Moreover, the content of these cerebral tissues in 5-hydroxytryptamine-moduline is affected by stress. In the present work, polyclonal anti-5-hydroxytryptamine-moduline antibodies were administered to mice via intracerebroventricular injections to study the in vivo effects of a lowering (or suppression) of this neuropeptide in the central nervous system. The inactivation of the peptide by the specific antibodies significantly modified the behaviour of the animals in two behavioural tests, the open-field and elevated plus-maze, known to be animal models related to anxiety behaviour. Treated mice displayed behaviour consistent with an anxiolytic effect of the antibody, suggesting a potential role of 5-hydroxytryptamine-moduline in the control of anxiety.
Knockout mice
5-HT1a v 5-HT1b
SSRIs and 5-HT1b
MDMA and 5-HT1a
MDMA and 5-HT1b
5-HT1b and reward
5-HT1b and anxiety
Aggression and serotonin
5-HT-moduline, serotonin and mood
5-HT1b inverse agonists as antidepressants
Extracellular serotonin and 5-HT1b blockade
5-HT(1b) receptor compounds and ventral tegmental area ICSS thresholds

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family