Reward signaling by dopamine neurons
by
Schultz W.
Institute of Physiology and Program in Neuroscience,
University of Fribourg, Switzerland.
wolfram.schultz@unifr.ch
Neuroscientist 2001 Aug;7(4):293-302


ABSTRACT

Dopamine projections from the midbrain to the striatum and frontal cortex are involved in behavioral reactions controlled by rewards, as inferred from deficits in parkinsonism, schizophrenia, and drug addiction. Recent experiments have shown that dopamine neurons are not directly modulated in relation to movements. Rather, they appear to code the rewarding aspects of environmental stimuli. They show short, phasic increases of activity following primary food and liquid rewards ("unconditioned stimuli") and conditioned, reward-predicting stimuli of visual, auditory, and somatosensory modalities. They also display smaller activation-depression sequences after stimuli resembling rewards and after novel or particularly intense stimuli. Rewards are only reported as far as they occur differently than predicted. According to learning theories, a "prediction error" message may constitute a powerful teaching signal for behavior and learning. The phasic reward message is different from the more tonic enabling function of dopamine that is deficient in Parkinson's disease, indicating that dopamine neurons subserve different functions at different time scales. Neurons in other brain structures, such as the striatum, orbitofrontal cortex, and amygdala, code the quality, quantity, and preference of rewards. The dopamine reward prediction error signal may cooperate with these reward perception signals during the learning and performance of behavioral reactions to motivating environmental stimuli.
D1
Reward
Structure
Selegiline
Roxindole
Dopamine
Amineptine
Pramipexole
Bromocriptine
Methylphenidate
Drugs and reward
Dopamine and thought
The dopamine transporter
Dopamine knock-out mice
The pleasure and the pain
Dopamine deficiency and depression
Depression, dopamine and dextroamphetamine
Mesolimbic medium spiny neurons and pleasure
Regulation of synapses in the nucleus accumbens
The nucleus accumbens: opioids versus cannabinoids
The dopamine D3 receptor and neuropsychiatric disorders

Refs
and further reading

HOME
HedWeb
Nootropics
Cocaine.org
Future Opioids
BLTC Research
MDMA/Ecstasy
Superhapiness?
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family